PRACTICE: CALCULATING PH OF ACIDS

ANSWERS

1.

	HCN(aq)	+	H⁺(aq)	+	CN⁻(aq)
ı	0.01		~0		0
С	-X		+χ		+χ
Е	0.01–x		Х		Х

$$\begin{split} \text{K}_{a} &= \frac{[\text{H}^{+}(\text{aq})] [\text{CN}^{-}(\text{aq})]}{[\text{HCN}(\text{aq})]} \\ 6.2 \times 10^{-10} &= \frac{(\text{x})(\text{x})}{0.01 - \text{x}} \qquad \{\text{K}_{a} = 6.2 \times 10^{-10} \text{ from data table on p19 in course manual}\} \\ 6.2 \times 10^{-10} &= \frac{\text{x}^{2}}{0.01 - \text{x}} \\ 6.2 \times 10^{-10} &= \frac{\text{x}^{2}}{0.01} \qquad \{\text{small K}_{a} \text{ ; assume 0.01-x =0.01}\} \\ 6.2 \times 10^{-12} &= \text{x}^{2} \qquad \{\text{multiply by 0.01}\} \\ 2.4899... \times 10^{-6} &= \text{x} \qquad \{\text{square root}\} \\ [\text{H}^{+}]_{eq} &= \text{x mol/L} \\ &= 2.4899... \times 10^{-6} \text{ mol/L} \\ pH &= -\log [\text{H}^{+}] \\ &= -\log (2.4899... \times 10^{-6}) \\ &= 5.60 \end{split}$$

2. HBr(aq)
$$\rightarrow$$
 H⁺(aq) + Br⁻(aq)
strong acid
[H⁺] = 0.12 mol/L
pH = $-\log$ [H⁺]
= $-\log$ (0.12)

= 0.92

	HF(aq)	=	H⁺(aq)	+	F⁻(aq)
I	0.25		~0		0
С	-X		+χ		+χ
Е	0.25-x		Х		Х

$$K_{a} = \frac{[H^{+}(aq)][F^{-}(aq)]}{[HF(aq)]}$$

$$6.6 \times 10^{-4} = \frac{(x)(x)}{0.25 - x} \qquad \{K_{a} = 6.6 \times 10^{-4} \text{ from data table on p19 in course manual}\}$$

$$6.6 \times 10^{-4} = \frac{x^{2}}{0.25 - x}$$

$$6.6 \times 10^{-4} = \frac{x^{2}}{0.25} \qquad \{\text{small } K_{a}; \text{ assume } 0.25 - x = 0.25\}$$

$$1.65 \times 10^{-4} = x^{2} \qquad \{\text{multiply by } 0.25\}$$

$$1.2845... \times 10^{-2} = x \qquad \{\text{square root}\}$$

$$[H^{+}]_{eq} = x \text{ mol/L}$$

$$= 1.2845... \times 10^{-2} \text{ mol/L}$$

$$pH = -\log [H^{+}]$$

$$= -\log (1.2845... \times 10^{-2})$$

$$= 1.89$$